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Abstract

Two problems of laminar-forced convection in pipes and channels, under fully developed conditions, are solved for an

imposed constant temperature at the wall, with fluids obeying the simplified Phan-Thien–Tanner (SPTT)model. The fluid

properties are taken as constants and axial conduction is negligible. The first case represents the asymptotic behaviour of

the Graetz problem for the SPTT fluid, i.e., equilibrium between axial convection and radial conduction of thermal

energy with negligible viscous dissipation. The solution is given by an analytical expression but it is only approximate

(within 0.3%) as it was obtained with an algebraic method based on successive approximations. The second problem has

an exact analytical solution representing the equilibrium between viscous dissipation and radial heat conduction, with

negligible axial convection and a constant wall temperature. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The simplified Phan-Thien–Tanner (SPTT) constitu-

tive equation is a reduced version of the full PTT model

of Phan-Thien and Tanner [1], which was derived from

considerations of network theory and is given by Eq. (1).

The simplification involved is to consider only affine

motions of the polymer molecules relative to the con-

tinuum, with the consequence that the parameter n, that
quantifies the slip velocity between the molecular net-

work and the continuum medium, must be set to zero.

Y ðtr s; T Þs þ k s
r

�
þ nD � s þ ns �DT

�
¼ 2gD: ð1Þ

In Eq. (1) s
r
stands for Oldroyd’s upper convected

derivative of the stress tensor s, as defined by Eq. (2), k is
a relaxation time, g is a viscosity coefficient and D is the

rate of strain tensor.

s
r ¼ Ds

Dt
� s � ru�ruT � s: ð2Þ

The stress-coefficient function Y is related to the rate

of destruction of junctions in the molecular network and

can be decoupled as

Y ðtr s; T Þ ¼ /ðT Þf ðtr sÞ; ð3Þ

where T is the temperature and tr s is the trace of the

stress tensor s. Following Phan-Thien [2] the function

/ðT Þ is arbitrarily set to unity at the reference tem-
perature at which the material parameters of the model

are determined, but here we generalise this assumption

and so we do not consider thermal effects on the stress

coefficient function Y.

The stress-dependent part of the stress-coefficient

function has the exponential form:

f ðtr sÞ ¼ exp ek
g
tr s

� �
; ð4Þ

which can be linearised as:

f ðtr sÞ ¼ 1þ ek
g
tr s ð5Þ
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when the factor in brackets is small. This linearisation is

adequate when the molecular deformation is small as in

weak flows, following Tanner’s [3] classification. Ac-

cording to this criteria, the pipe flow that is analysed

here is a weak flow, i.e. it has a very limited amount of

extensional molecular deformation and so Eq. (5) results

in values in close agreement to those given by Eq. (4).

The pipe flow is a shear-dominated flow for which most

nonlinear models, such as the SPTT model, provide

accurate descriptions of shear properties of polymer

melts, as demonstrated by Peters et al. [4]. The exception

here is the failure of SPTT to predict a non-zero second

normal stress difference, which is proportional to n in
the full PTT model, but N2 is totally irrelevant to the
hydrodynamics of the fully developed pipe and channel

flows and therefore is not considered.

In Eq. (5) e is a parameter related to the elongational
behaviour of the model. It imposes an upper limit to the

elongational viscosity that is proportional to the inverse

of e [5, p. 227], and the upper-convected Maxwell model,
which has an unbounded elongational viscosity in simple

extensional flow, is recovered when e ¼ 0.
The SPTT fluid is shear-thinning because of the

term involving e in the stress-coefficient function

Y ðtr sÞ, provided e is not too small. The degree of
shear-thinning is not so accentuated as in the full PTT

model, but the introduction of a nonzero n is prob-
lematic because it causes a maximum shear stress in

the rheogram. In fact, and according to Larson [6], by

adopting the Gordon–Schowalter derivative (i.e. by

having n 6¼ 0) the full PTT model inherits the problems
of the Johnson–Segalman model, one of them being

the maximum in the flow curve as shown by Alves et

al. [7].

The analytical hydrodynamic solutions of the SPTT

pipe and channel flows were derived by Oliveira and

Pinho [8] who subsequently performed the analysis of

the corresponding heat transfer problem for imposed

constant wall heat flux [9]. In this latter work, due ac-

count has been taken of the effect of viscous dissipation,

which is important for very viscous polymer melts, and

as example of a very useful result for polymer processing

was the determination of the axial variation of bulk

temperature in the adiabatic regime [10] (obtained by

setting _qqw ¼ 0 or Br ¼ 1 in Eq. (28) of [9]). This was

found to depend on the pressure gradient exactly as a

Newtonian fluid, i.e., the adiabatic regime for a SPTT

fluid is independent of viscoelasticity.

The present work extends the analysis of Pinho and

Oliveira [9] to other relevant thermally fully developed

asymptotic cases in duct (pipe or channel) with an im-

posed constant wall temperature: (1) the equilibrium

between viscous dissipation and radial conduction, and

(2) the equilibrium of axial convection with radial con-

duction in the absence of viscous dissipation. The solu-

tion of the first problem is exact and both temperature

profiles and Nusselt number expressions are given. The

solution for the Nusselt number in the second problem is

analytical but it is only approximate as it was obtained

with a successive approximation method. It represents

the limiting Nusselt number at long duct distances for

the Graetz problem of the SPTT fluid. This second

solution turns out to be rather more complex than that

for the imposed wall heat flux case.

Nomenclature

a non-dimensional viscoelastic parameter, Eqs.

(12) and (42)

Br Brinkman number, Eq. (20)

c specific heat

D rate of strain tensor

DH hydraulic diameter

h heat transfer coefficient

H half-width of channel

k thermal conductivity

Nu Nusselt number

p pressure

Pe Peclet number ðDHU=aÞ
Pr Prandtl number ðgc=kÞ
_qqw heat flux at the wall

r radial coordinate

R pipe radius

T temperature
�TT cross-sectional average temperature
�TTi bulk temperature at inlet

�TTI bulk temperature at a reference location

Tw wall temperature

u velocity vector

U cross-sectional average velocity

UN cross-sectional average velocity for a New-

tonian fluid

We Weissenberg number ðkU=RÞ
x longitudinal coordinate

Y stress coefficient function

a thermal diffusivity

e extensional parameter of PTT model

U viscous dissipation function

g viscosity coefficient of PTT model

k relaxation time of PTT model

h non-dimensional temperature, Eq. (21)

q density

s stress tensor

n slip parameter of PTT model


 refers to dimensionless quantities
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In polymer injection and extrusion the polymer melts

flow at high temperature and are subject to various heat

transfer processes. The quality of the final product de-

pends on the ability to avoid hot spots and instabilities

during the manufacturing process, and this requires

careful control of heat transfer and temperature profiles

[11], as well as of the hydrodynamics in order to avoid

undesirable effects such as spurt [12].

Polymer melt flows in industry are characterised by

very low Reynolds numbers (of the order of 10�3–10�5)

and high Prandtl numbers (106–108), thus leading to a

very fast hydrodynamic flow development but rather

slow thermal development. This combination yields a

Peclet number (Pe � PrRe) of the order of 3000 and it is
known that full thermal development for Newtonian

fluids, under conditions of hydrodynamic fully devel-

oped flow, requires normalised lengths (length/trans-

verse size) of 0.05Pe [13]. In extrusion heads the length

of the parallel zone is well shorter than this critical

length, but it is located at the end of a long, slightly

tapered, duct where the flow is likely to be close to being

thermal and hydrodynamic fully developed. In fact, in

the downstream half of long tapered ducts the fully

developed solution may also be a good approximation

to the true prevailing conditions.

In the following section the problem is formulated,

the hydrodynamic solution is presented and the analyt-

ical procedure required to solve the heat transfer prob-

lem, with constant wall temperature, is outlined. In

Section 3, the solutions obtained under the two asymp-

totic assumptions are presented and discussed for the

pipe flow case. Before closure, the corresponding solu-

tions for the channel flow are given without details in

Section 4.

2. Formulation of the problem

2.1. Fluid model and assumptions

Following the simplifications to the full PTT model

described in the previous section, the fluid model under

investigation is

1

�
þ ek

g
tr s

�
s þ ks

r ¼ 2gD ð6Þ

with s
r
given by Eq. (2).

The flow is assumed to be steady and laminar, under

fully developed hydrodynamic and fully developed

thermal conditions. The fluid properties are taken as

constant and so no dependence of properties and model

parameters on temperature will be considered. The

boundary condition is that of an imposed constant

temperature at the duct walls, Tw. Two flow geometries
are considered, namely the plane case (channel flow) and

the axisymmetric case (pipe flow), but the details of the

derivation are given only for the pipe flow. At the end of

the paper the solution for the channel flow is presented

without further comments.

Since polymer melts and concentrated polymer

solutions are very viscous and the industrial flows fre-

quently involve large velocity gradients, viscous dissipa-

tion effects will be considered in part of the analysis.

We further make the simplifying assumption of iso-

tropic thermal and thermodynamic properties, although

it is known that they are anisotropic due to their inti-

mate relation to molecular structure. Consideration of

property isotropy is fairly close to reality because, as the

polymer melts, its chains tend towards random config-

urations after some characteristic time of the fluid. In

this respect we follow previous heat transfer work rel-

evant to polymer melts cited by Agassant et al. [10],

Tadmor and Gogos [11] and Bird et al. [14], who showed

that consideration of property isotropy did not seriously

affected the results.

It is further assumed that Fourier’s law of heat

conduction is valid and that the internal energy and

thermal conductivity do not depend explicitly on the

velocity gradient or other kinematic quantities. For di-

lute polymer solutions there is some evidence that

thermal conductivity may depend weakly on shear rate

[15] (of the order of 10–20% over a range of

406 _cc6 510 s�1), but the authors are unaware of similar
work for concentrated polymer solutions and polymer

melts. All these are standard, reasonable assumptions in

heat transfer calculation of non-Newtonian fluids as

discussed in Bird et al. [14, Section 4.4], Tanner [3,

Section 9.1] and Agassant et al. [10, Chapter 2].

With the above assumptions the hydrodynamic and

thermal problems become fully decoupled. The hydro-

dynamic solution is presented first, followed by the

solution for the thermal problem, which is the focus of

the present work.

2.2. Hydrodynamic solution

The hydrodynamic solution for the pipe flow was

derived by Oliveira and Pinho [8] who arrived at the

following velocity profile:

u
 � u
U

¼ 2UN
U

1

�
� r

R

� �2�
1

(
þ 16eWe2 UN

U

� �2

� 1

�
þ r

R

� �2�)
: ð7Þ

The non-dimensional group We ¼ kU=R is the

Weissenberg number, a measure of the level of elasticity

in the fluid and is based on the cross-sectional average
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velocity U for the PTT fluid. UN is the average velocity
for a Newtonian fluid flowing under the same pressure

gradient dp=dx

UN � �ðdp=dxÞR2
8g

ð8Þ

and was shown to be given by:

UN
U

¼ 432
1=6ðd2=3 � 22=3Þ
6b1=2d1=3

with

d ¼ ð33bþ 4Þ1=2 þ 33=2b1=2 and b ¼ 64
3

eWe2: ð9Þ

The radial profiles of the shear stress sxr and the
corresponding shear rate du=dr are also needed:

s
xr �
sxr

4gU=R
¼ �UN

U
r
R

� �
; ð10Þ

du=dr
4U=R

¼ �UN
U

r
R

� �
1

"
þ 32eWe2 UN

U

� �2 r
R

� �2 #
: ð11Þ

It will be convenient for the foregoing analysis to

define a modified non-dimensional group as

a � 16eWe2 UN
U

� �2
; ð12Þ

which gives a measures of both the extensional and the

elastic properties of the fluid. It should be recalled here

from the hydrodynamic solution [8] that normal stresses

will depend directly onWe and inversely on some power

of eWe2, whereas the shear stress will depend exclusively
on eWe2. The dependence onWe is solely a normal stress

effect but the dependence on eWe2 combines a normal
stress effect with the elongational parameter, and this

combination imparts a shear-thinning behaviour to the

viscosity function. It is in this context that the expression

shear-thinning is used henceforth in the paper when

referencing to the effect of eWe2.

2.3. Heat transfer procedure

The equation to be solved is the energy transport

equation for the axisymmetric flow case with viscous

dissipation, but without internal heat sources and neg-

ligible axial conduction:

k
1

r
o

or
r
oT
or

� �
¼ qcu

oT
ox

� U; ð13Þ

where k, q and c stand for the thermal conductivity,

density and specific heat of the fluid and U is the dissi-

pation function. For the pipe flow this dissipation

function involves only the shear stress and shear rate,

U � sij
oui
oxj

¼ sxr
ou
or

: ð14Þ

The temperature T depends on the radial (r) and

axial positions (x) and u stands for the axial velocity

component. The relevant boundary conditions are

symmetry at the axis:

oT
or

����
r¼0

¼ 0 ð15Þ

and an imposed constant temperature at the wall

Tr¼R ¼ Tw: ð16Þ

Next, we non-dimensionalise Eq. (13) by scaling

lengths with the pipe radius ðr
 � r=R, x
 � x=RÞ,
velocity with the average velocity ðu
 � u=UÞ and tem-
perature as

T 
 � Tw � T
Tw � �TTi

; ð17Þ

where �TTi represents the bulk temperature at the inlet.
The resulting dimensionless energy equation is

1

r

o

or

r

oT 


or


� �
� 4Brs
xr

ou


or

¼ Pe
2
u


oT 


ox

; ð18Þ

which expresses the so-called Graetz problem extended

to account for viscous dissipation [16]. In Eq. (18) the

Peclet number Pe is defined by

Pe � PrRe ¼ qcU2R
k

ð19Þ

and the Brinkman number Br (following the original

definition of Dryden, see [16]), by:

Br � gU 2

kðTw � �TTiÞ
: ð20Þ

For Newtonian fluids the solution of Eq. (18) re-

quires transformation of variables followed by such

techniques as separation of variables or L�eevêeque anal-
ysis, and was obtained by Brinkman [18] and Ou and

Cheng [19], amongst others (see also [14, Chapter 5] and

[20]). For the SPTT fluid, the solution of Eq. (18) is

rather more complex, because of the dependence on the

Weissenberg number, and is not attempted here. We

concentrate instead on obtaining two asymptotic solu-

tions.

For such asymptotic solutions, it is convenient to

normalise differently the axial convective term and for

that purpose we introduce a non-dimensional tempera-

ture h as

h ¼ Tw � T
Tw � �TT

; ð21Þ

where �TT is the bulk temperature, so that the axial tem-
perature gradient becomes:

oT
ox

¼ �ðTw � �TT Þ oh
ox

þ h
d�TT
dx

: ð22Þ
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One possible advantage of using h is that oh=ox ¼ 0
in fully developed thermal flow situations [13]. Hence,

Eq. (22) reduces to

oT
ox

¼ h
d�TT
dx

: ð23Þ

Introducing this result into the different non-dimen-

sionalisation of the convective term of Eq. (13), and

using again the starred quantities for the remaining

normalisations, an alternative dimensionless energy

equation is

1

r

o

or

r

oT 


or


� �
¼ Pe
2
u
h

d�TT 


dx

þ 4Brs
xr

ou


or

; ð24Þ

where all quantities on the right-hand side depend only

on r, except the derivative of the bulk temperature which

is independent of the radius, by definition.

The profile of the starred non-dimensional velocity of

Eq. (7) is written as

u
 ¼ u
U

¼ 2UN
U

1
�

þ a� r
2 � ar
4



ð25Þ

and the starred shear stress is defined in Eq. (10).

One of the important quantities to be obtained is the

heat transfer coefficient under the form of a Nusselt

number. This solution functional will also be useful to

verify convergence of the iterative procedure to be ex-

plained below. The heat transfer coefficient is defined

with dimensional quantities at the wall in the usual way:

h � _qqw
�TT � Tw

¼ �kðoT=orÞr¼R
�TT � Tw

ð26Þ

and the Nusselt number becomes

Nu � 2Rh
k

¼ 2RðoT=orÞjr¼R

Tw � �TT
ð27Þ

or, in dimensionless form

Nu ¼ �2ðoT 
=or
Þjr
¼1
�TT 
 : ð28Þ

We explain now the mixed analytical/numerical pro-

cedure utilised to solve Eq. (24) which requires applica-

tion of a successive approximation method following

Kays and Crawford [17, p. 96]. It starts, as a first ap-

proximation, with the h profile for constant wall heat flux
(given by Pinho and Oliveira [9, Eq. (32)]), which is

substituted on the right-hand side of Eq. (24) together

with the normalised profiles of velocity and shear stress.

Since h, u
 and s
xr are polynomials in r

, Eq. (24) is readily

integrated for T 
 to obtain a corrected temperature pro-

file for constant wall temperature. From this corrected T 


profile, new bulk and h temperatures are calculated using
their definitions and a new expression for the Nusselt

number is also evaluated. This newly corrected h profile is
then used to start the next iteration. The procedure is

repeated in order to obtain systematically improved val-

ues of all quantities and of the Nusselt number which

converges to a certain value. The procedure is stopped

when the Nusselt number variation from successive ap-

proximations falls below a prescribed tolerance.

This method is applied to the solution of the devel-

oping thermal flow without viscous dissipation ðBr ¼ 0Þ
with view to obtain an expression for the Nusselt num-

ber under fully developed conditions ðoh=ox ¼ 0Þ. This
constitutes the first asymptotic solution in this paper,

henceforth termed the ‘‘fully developed thermal flow

with negligible viscous dissipation’’.

A second asymptotic case is obtained when d �TT 
=dx


vanishes in Eq. (24), whereby viscous dissipation is

balanced by radial conduction only. The solution to this

problem is easier and will also be given in the following

section under the heading ‘‘equilibrium viscous dissipa-

tion flow’’.

3. Solutions and discussion of results for pipe flow

We give first the approximate solution for the prob-

lem of thermally fully developed flow without viscous

dissipation (Eq. (24) with Br ¼ 0) and then we derive the
exact solution for the problem of equilibrium between

radial conduction and viscous dissipation (Eq. (24) with

dT 
=dx
 ¼ 0Þ.

3.1. Fully developed thermal flow with negligible viscous

dissipation

As mentioned above, the initial guess for h was taken
as the solution to the problem with a constant wall heat

flux obtained by Pinho and Oliveira [9] for negligible

viscous dissipation ðBr ¼ 0Þ

hðr
Þ ¼
�
� 1þ a

2
r
2 þ 1

8
r
4 þ a

18
r
6 þ 3

8
þ 8

18
a
�

,
19

54
a2

�
þ 17
30

aþ 11
48

�
UN
U

: ð29Þ

The successive approximation method described in

the previous section was applied until differences from

consecutive iteration Nusselt numbers were less than

0.5%. This happened at the end of the third iteration

which differed from the second by less than 0.3% as can

be assessed by inspection of Fig. 1. This figure plots

1� Nuiþ1=Nui as a function of eWe2, where the subscripts
designate the iteration number and Nuq is the initial
Nusselt number corresponding to the condition of im-

posed wall heat flux, from [9]. It shows the quick con-

vergence, with Nu2 already within 2% of Nu1, and that
there is basically a decrease of one order of magnitude in

the relative difference between consecutive Nusselt

numbers. For the Newtonian fluid ða ¼ 0Þ, the Nusselt
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number at the third iteration was well within 0.1% of the

value quoted in the literature (3.658 in [17] or [16, 3.6568

quoted in p. 79]).

Tracking of the solution by algebraic means up to the

third iteration (where an accuracy below 0.1% is esti-

mated) was a tedious operation leading to lengthy

equations in terms of powers of r
. This will not be re-
peated here, and we shall content ourselves in giving the

final ‘‘simplified’’ expressions for the temperature and

Nusselt number and analysing their variation from

plots. The correctness of the approximate solution was

checked by verifying that the same result is obtained

when the method is started from different initial con-

ditions, as reported in an internal report [21].

The normalised temperature profile is a long poly-

nomial in r
 and a given by

T 
 ¼ � Pe
2

d �TT 


dx

0:9366

X4
i¼0

diai
"(

þ 1:463r
2

�
X4
i¼0

aiai
"

�
X11
j¼0

bijr

2j

##,X4
i¼0

cia
i

)
; ð30Þ

where the coefficients ai, ci and di are presented in

Table 1 and bij in Table 2.

The Nusselt number was found to be given by

Nu ¼ 3:658
X4
i¼0

cia
i

,
½1

�(
þ ð4=3Þa� 2:4368a5

�
þ 10:172a3 þ 17:004a3 þ 14:230a2

þ 5:9610aþ 1

�)

; ð31Þ

where the ratio of bulk velocities U=UN has been be
eliminated by means of the following expression from [8]

U
UN

¼ 1þ 4
3
a: ð32Þ

Fig. 1. Relative difference between Nusselt numbers at con-

secutive iterations as a function of eWe2.

Table 1

Coefficients ai, ci and di for pipe flow

0 1 2 3 4

ai 0.614 2.779 4.711 3.546 1

ci 1 4.7967 8.6410 6.9291 2.0869

di 0.5258 2.4656 4.3405 3.4 1

Table 2

Coefficient bij for pipe flow

j i

0 1 2 3 4

0 �1 �1 �1 �1 �1
1 7.021�10�1 6.302�10�1 5.540�10�1 4.730�10�1 3.865�10�1
2 �3.376�10�1 �2.418�10�1 �1.456�10�1 �4.898�10�2 4.817�10�2
3 1.111�10�1 4.659�10�2 �1.096�10�2 �6.102�10�2 �1.029�10�1
4 �2.788�10�2 �4.600�10�4 1.819�10�2 2.802�10�2 2.895�10�2
5 4.865�10�3 �3.383�10�3 �6.130�10�3 �4.104�10�3 1.900�10�3
6 �5.602�10�4 1.108�10�3 6.501�10�4 �1.109�10�3 �3.354�10�3
7 2.814�10�5 �1.861�10�4 1.219�10�4 4.953�10�4 5.679�10�4
8 0 1.186�10�5 �5.305�10�5 �4.994�10�5 8.634�10�5
9 0 0 4.802�10�6 �1.091�10�5 �3.870�10�5
10 0 0 0 1.854�10�6 0

11 0 0 0 0 6.745�10�7
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The normalised temperature h, as defined by Eq. (21),
is independent of axial location for thermally fully

developed flow, as implied by the definition of this

asymptotic condition. It can be obtained from a balance

of energy at a cross-section, which shows that

oT 


or


����
r
¼1

¼ Pe
4

d�TT 


dx

ð33Þ

hence from Eq. (28) we conclude that

�TT 
 ¼ � Pe
2

d�TT 


dx

1

Nu
ð34Þ

and h ¼ T 
= �TT 
, with the numerator and denominator

given by Eqs. (30) and (34), respectively.

The full lines in Figs. 2(a) and (b) show the resulting

variation of Nusselt number with eWe2, which is the
relevant viscoelastic number in these flows, in both lin-

ear and semi-log scales. The dashed lines in the figures

help to show the iterative progression of Nusselt number

and complement the information of Fig. 1. They are

useful as a check on the correctness of the implemen-

tation of the numerical method, and clearly show that

more iterations would bring a negligible improvement

on the solution.

The Nusselt number varies between two asymptotes:

at the limit of vanishing eWe2 it gives the well-known
Newtonian value of 3.658 and, as eWe2 goes to infinity,
it tends to 4.178. There is thus a maximum increase of

14% in relation to the Newtonian solution, represented

in the figure as a horizontal line. It is very unlikely that

flows attain such high values of eWe2 and Fig. 2(b)
presents the same information in linear coordinates and

in a limited range, eWe2 2 ½0; 1�. At eWe2 ¼ 1 the Nus-

selt number is already equal to four, representing an

increase of 9.4% from the Newtonian value. As with

the Nusselt number for constant wall heal flux, repre-

sented in the figures in long dashes, the Nusselt number

increases with eWe2 due to the more pronounced shear-
thinning effect.

The variation of h with radius is given in Fig. 3 for
various values of the parameter eWe2. The variation with
eWe2 is mild since both its numerator and denominator
depend similarly on eWe2, a conclusion similar to that
reached in the previous work for the case of imposed

wall heat flux [9].

Fig. 2. Variation of the Nusselt number with eWe2. Dashed lines show values at consecutive iterations, starting from the case of

imposed heat flux ðNuqÞ: (a) in semi-log coordinates; (b) in linear coordinates.

Fig. 3. Radial profiles of h as a function of fluid elasticity.
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The practical use of the expressions for temperature

(Eqs. (30) and (34)) is rather limited unless the variation

of the bulk temperature with the axial coordinate is

known. The successive approximation method used here

cannot provide such gradient because it only gives the

asymptotic radial variation. However, in the fully de-

veloped flow region, where Nu has reached its constant

asymptotic value, it is possible to integrate the energy

balance (Eq. (34)) yielding the following axial variation

of bulk temperature

�TT 
 ¼ �TT 

I exp

�
� 2Nu

Pe
x

�

ð35Þ

from which its axial gradient is obtained

d�TT 


dx

¼ � 2Nu

Pe
�TT 

I � exp

�
� 2Nu

Pe
x

�
: ð36Þ

If x
 is the axial position relative to a reference loca-
tion within the fully developed region, and �TTI is the bulk
temperature at that reference location, then Eqs. (35) and

(36) give exact values for the bulk temperature and its

gradient; otherwise, if there is no certainty that x
 lies in
the fully developed region, then �TTI has to be estimated
and relations (35) and (36) are only approximate.

3.2. Equilibrium viscous dissipation flow

We turn now to the second problem involving a

balance between radial conduction and viscous dissipa-

tion under fully developed conditions. Substitution of

the velocity profile (Eq. (25)) and the shear stress and

shear rate profiles (Eqs. (10) and (11)) into Eq. (24) with

d�TT 
=dx
 ¼ 0, produces

1

r

o

or

r

oT 


or


� �
¼ 16Br UN

U

� �2
2ar
4
�

þ r
2


; ð37Þ

which is of straightforward integration. The first inte-

gration gives the temperature gradient at the wall needed

to obtain the Nusselt number

dT 


dr


����
r
¼1

¼ 4Br UN
U

� �2
4aþ 3
3

¼ 4Br 3

4aþ 3

¼ 4Br UN
U

; ð38Þ

where use was made of expression (32). A second inte-

gration and imposition of the wall temperature bound-

ary condition gives the temperature distribution

T 
 ¼ Br
UN
U

� �2
8a r
6 � 1ð Þ þ 9 r
4 � 1ð Þ½ �

9
ð39Þ

and the dimensionless bulk temperature becomes

�TT 
 ¼ �Br
UN
U

� �3
280a2 þ 504aþ 225

270
: ð40Þ

Finally, the Nusselt number is

Nu ¼ 240ð4aþ 3Þ2

280a2 þ 504aþ 225 ; ð41Þ

which gives the correct Newtonian value Nu ¼ 48=5 for
a ¼ 0 [16, p. 80]. The important conclusion here is that
the Nusselt number does not depend on the Brinkman

number. The definition of Nu in Eq. (28), involves the

ratio of two quantities that in this limiting problem de-

pend linearly on the Brinkman number and conse-

quently Nu becomes independent of Br.

We know from the equivalent constant wall heat-flux

problem [9] that viscous dissipation has a strong impact

upon the heat transfer characteristics, and this is con-

firmed in the present case. For a Newtonian fluid the

Nusselt number more than doubles, from 3.658 to 9.6,

but this increase is accentuated for the viscoelastic fluid,

as shown in the comparative plot of Fig. 4. For eWe2 ¼ 1
the normalised heat transfer coefficient with viscous dis-

sipation is already three times higher than that for neg-

ligible dissipation, and this ratio increases to the limiting

value of 3.28 as eWe2 ! 1 ðNu ! 13:714 with dissipa-
tion, compared with Nu ! 4:178 without dissipation).
Radial temperature profiles for these situations are

plotted in Fig. 5. An increase in Brinkman number raises

the temperature level linearly in the pipe section.

Although the influence of viscous dissipation increases

with flow elasticity, as seen in the Nusselt number plot of

Fig. 4, the difference between the local and the wall

temperatures (recall that �T 
 / T � Tw) decreases with
eWe2, because the flow becomes increasingly shear-thin-
ning due to normal stress effects and consequently vis-

cous dissipation becomes progressively more localised in

Fig. 4. Comparison between the Nusselt numbers for negligible

viscous dissipation and the limiting equilibrium viscous dissi-

pation condition, as a function of fluid elasticity (eWe2).

1420 P.M. Coelho et al. / International Journal of Heat and Mass Transfer 45 (2002) 1413–1423



the wall region and less pronounced in the core of the

flow. Thus, since the heat is generated closer to the wall,

it is evacuated easier without the need to heat the bulk of

the flow. Note that the decrease in �T 
 with viscoelas-

ticity induces a wider core of uniform temperature.

4. Results for channel flow

The solution of the two heat transfer problems for

the channel flow case follows qualitatively that of the

pipe flow, with some differences arising from the differ-

ent forms of the energy equation and the velocity profile.

The channel half-width is denoted H and the parameter

a is now defined as:

a � 9eWe2 UN
U

� �2
with

U
UN

¼ 1þ 6
5
a

and We ¼ kU
H

ð42Þ

following [8]. Results for the two cases previously ad-

dressed in the pipe geometry are presented next.

4.1. Fully developed thermal flow with negligible viscous

dissipation

For the problem with negligible viscous dissipation,

with both walls having the same temperature, the

transverse distribution of temperature is given by

Eq. (43):

T 
 ¼ � Pe
2

d�TT 


dx

0:6694

X4
i¼0

diai
"(

þ 0:8604y
2

�
X4
i¼0

aiai
"

�
X11
j¼0

bijy

2j

##,X4
i¼0

cia
i

)
: ð43Þ

After application of the successive approximation

method, the Nusselt number is now found to be given

by:

Nu ¼ 6:8567
X4
i¼0

ciai

,
ðU=UNÞ a5

��(
þ 4:4810a4

þ 8:0360a3 þ 7:2093a2 þ 3:2355aþ 0:58111


)

ð44Þ

and the difference between the bulk and wall tempera-

tures is

�TT 
 ¼ � Pe
2

d�TT 


dx

4

Nu
: ð45Þ

The parameters ai, ci and di in Eqs. (43) and (44) are

listed in Table 3 and bij in Table 4.

For a Newtonian fluid ða ¼ 0Þ the Nusselt number
expression simplifies to 7.541, the correct value from the

literature [16, p. 155]).

4.2. Equilibrium viscous dissipation flow

For the other fully developed problem, that of the

equilibrium between transverse conduction and heat

production by viscous dissipation, the analytical solu-

tion of the energy equation produces the temperature

profile of Eq. (46)

T 
 ¼ 3Br UN
U

� �2 4aðy
6 � 1Þ þ 5ðy
4 � 1Þh i
20

: ð46Þ

Table 3

Coefficients ai, ci and di for channel flow

0 1 2 3 4

ai 0.7348 3.1757 5.1461 3.7051 1

ci 0.6391 2.8563 4.7902 3.5728 1

di 0.6680 2.9532 4.8985 3.6132 1

Fig. 5. Effect of viscoelasticity and Brinkman number on the

radial temperature profiles in the equilibrium viscous dissipa-

tion problem. The full line is for Br ¼ 0:1 and eWe2¼ 0.01.
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The difference between the bulk and wall tempera-

tures is given by

�TT 
 ¼ �24Br UN
U

� �3
54a2 þ 110aþ 55

1925
ð47Þ

and the Nusselt number is quantified by

Nu ¼ 1925ð1þ ð6=5ÞaÞ2

2ð54a2 þ 110aþ 55Þ : ð48Þ

The variation of the Nusselt number with eWe2 and
the temperature profiles across the channel have been

checked to follow the same trends as those for the pipe

flow cases discussed in Section 3.

5. Conclusions

The steady, laminar flow of the simplified Phan-

Thien–Thanner model fluid, in pipes and channels, was

investigated for the condition of an imposed constant

wall temperature and under fully developed thermal and

hydrodynamic conditions. The two possible cases were

investigated and results were presented for the radial/

traverse profile of normalised temperature and for the

Nusselt number as a function of the relevant non-di-

mensional Brinkman number and the product of e with
the square of Weissenberg number.

The first fully developed solution pertained to the

equilibrium between axial convection and radial con-

duction of thermal energy, with negligible viscous dis-

sipation, and here it was observed that an increase in

fluid elasticity (as measured by
ffiffi
e

p
We, to be more pre-

cise) raised the normalised heat transfer coefficient by at

most 14% due to the increased level of shear-thinning

behaviour.

For the second thermally fully developed problem,

where there is equilibrium between radial conduction of

energy and heat production by viscous effects, viscous

dissipation is responsible for the increase in the Nusselt

number which is more pronounced the more elastic the

fluid is. Again, that was found to be associated with the

more intense shear-thinning fluid behaviour: shear-

thinning is enhanced by increasing
ffiffi
e

p
We, which was

seen to raise shear close to the wall while simultaneously

decreasing them in the core of the flow. Since viscous

dissipation is proportional to the shear rate, as shear-

thinning is enhanced the internal production of heat

increases nearer to the wall where heat is evacuated, and

decreases in the core of the duct, thus the thermal re-

sistance decreases and the Nusselt number raises.
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